Privileged and Confidential

Hydrogen as a Lever for Decarbonisation

Ashim Sharma World Hydrogen Energy Summit 2022

Nomura Research Institute (NRI) Consulting & Solutions India Pvt. Ltd.

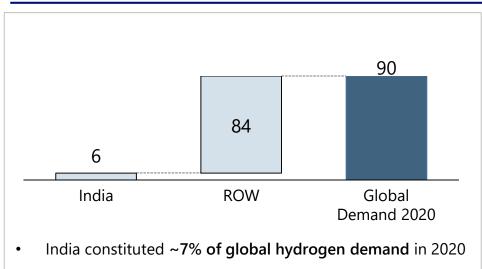
17th October 2022

1. Global Hydrogen Landscape

2. Hydrogen as a Lever for Decarbonisation (India)

3. Looking at the Value Chain for Unlocking Potential

4. Summary



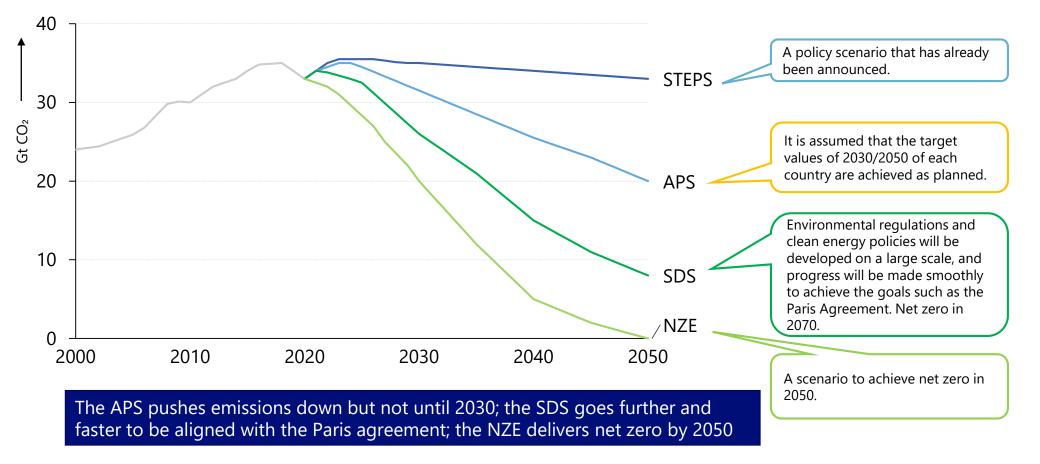
1. Global Hydrogen Landscape

Global Hydrogen Landscape

Global hydrogen demand stood at ~90Mt in 2020, majority is used for industrial applications, which contributed to ~900 Mt of direct CO_2 emissions in 2020

Global Hydrogen Demand

Major Uses of Hydrogen


- **Refining:** Desulfurizing , catalytic cracking of long chain hydrocarbons
- Chemicals: Ammonia synthesis for use in fertilizers
- **Others:** Smaller proportion of demand from transport, grid injection & Electricity generations

Types of Hydrogen	Source	Manufacturing process	CO ₂ emissions
Black / Brown H ₂	Coal / Lignite	Gasification (adding steam and oxygen)	Extremely high
Grey Hydrogen	Fossil gas	Steam Methane Reformation (SMR)	Very high
Blue Hydrogen	Fossil gas	SMR with carbon capture, utilisation & storage (CCUS(High
Green Hydrogen	Water	Renewable powered electrolysis	Negligible (Cleanest form)

 Green Hydrogen is a major vector to achieve net zero emission targets because it can abate 80 gigatons of CO2 by 2050 and limit global warming to 1.5 degrees Celsius

Global Hydrogen Landscape | IEA Scenarios

IEA has announced 4 scenarios of H₂ demand & supply in mid to long term based on policies of each country, and ambition targets in addition to policies

Note: APS=Announced Pledges ; SDS= Sustainable development scenario; NZE= Net Zero Emissions by 2050 scenario

Green Hydrogen Landscape | Global Developments

Europe leads globally in number of announced projects in Green Hydrogen & in targets for electrolysers installation by 2030

Criteria	Parameter	Details				
Hydrogen Usage	• Hydrogen Production 2020 (MT)	8.2 MT (9% of Global)	10.0 MT (11% of Global)	21.0 MT (23% of Global)		
Green Hydrogen Promotio n Measures • Green pro targ	Planned Investment	 €180-470 Bn (\$220-570 bn) in renewable H₂ in EU by 2050 €24-42 billion (USD 27 bn USD 47 bn.) by 2030 on electrolysis 	 \$ 52.5 million to accelerate transition to clean H₂ technology Investment to support clean H₂ project with CCUS (Blue H2) 	 China Petroleum & Chemical Corp, Sinopec has announced \$ 4.63 Bn into green H₂ projects by 2025 		
	 Electrolysers Deployment Targets in EU 		 ~17 MW of electrolysis for dedicated green H₂ production is operative, ~1.5 GW project in pipeline 13.5 GW of electrolysis projects to be online by 2030 as per DOE projection (~44GW electrolyser capacity needed for net-zero goals by 2030) 	 Chinese Hydrogen Alliance is urging govt. to increase renewable hydrogen electrolyser capacity to 100GW by 2030 		
	• Green H ₂ production target	 1 million tons/ year by 2024 10 million tons /year by 2030 	• N/A	 50% of H₂ production is expected to come from renewable by 2030 Sinopec targets 500,000 T of 'green' hydrogen capacity by 2025 Inner Mongolia approved massive power project (1.85 GW of solar and 370 MW of wind) to produce 66,900 tons of Green H2, project to be operational by 2023 		
	• Focus Sector	 Mobility & Industrial (Steel Production, Power Sector) & domestic Heating Germany has reserved 2GW for transport sector decarbonisation FCEV target : 500,000 fuel cell LCVs, 45,000 fuel cell trucks and buses by 2030 	 Data centers, ports, steel manufacturing, and medium- and heavy-duty trucks California Fuel Cell Partnership aims for 1 million FCEV deployment by 2030 	 Industrial, Chemical Processes & Mobility FCEV target ~50,000 (2025), ~ 1 million (2030) 		

Source: Secondary Research, IHS Markit, IEA Hydrogen Review 2021

5

2. Hydrogen as a Lever for Decarbonisation (India)

Hydrogen as a lever for decarbonisation (India) | India's Commitments

India's COP26 commitments has triggered enhanced need to adopt & scale up green hydrogen production

India COP26 Commitments

2

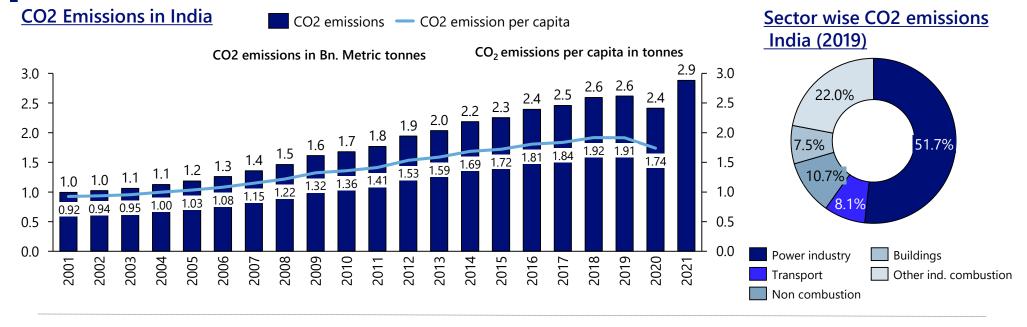
3

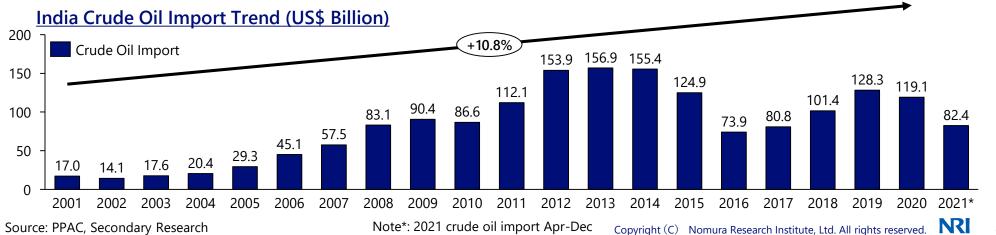
To cut total projected carbon emissions by 1 billion tonnes by 2030

Reducing carbon intensity of nation's economy <45% by 2030 from 2005 levels

Net-Zero carbon emissions by 2070

- Increase in share of renewables in the energy mix ~50% by 2030
- Expanding India's renewable energy capacity to 500 GW by 2030 (from earlier 450 GW,)
- In order to achieve reduction in carbon intensity, there will be increased emphasis on green hydrogen

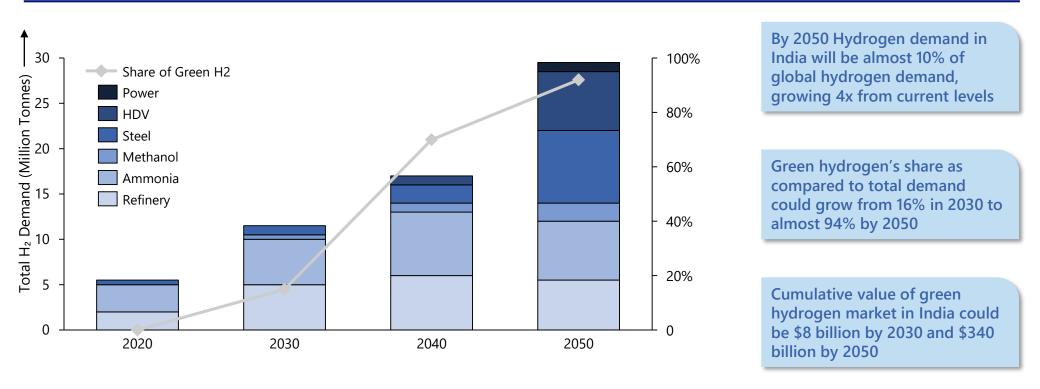

India Green Hydrogen Policy 2022


- Waver of inter-state transmission charges for 25 years to producers of green hydrogen for projects commissioned before 30th June 2025
- Green Hydrogen plants will be granted Open Access for sourcing of renewable energy
- Government of India proposes to set up manufacturing zones for green hydrogen production plant, MNRE to establish single portal for all statutory clearances/ permissions required to manufacture, transport, store & distribute green hydrogen
- Renewable Energy consumed for production of Green Hydrogen shall count towards RPO* compliance of consuming entity
- Ministry of New & Renewable Energy (MNRE) to aggregate green H₂ demand from different sectors and have consolidated bids conducted for procurement to achieve competitive prices

Source: Ministry of Power, Secondary Research RPO*: Renewable Purchase Obligation

Hydrogen as a lever for decarbonisation (India) | Emission footprint

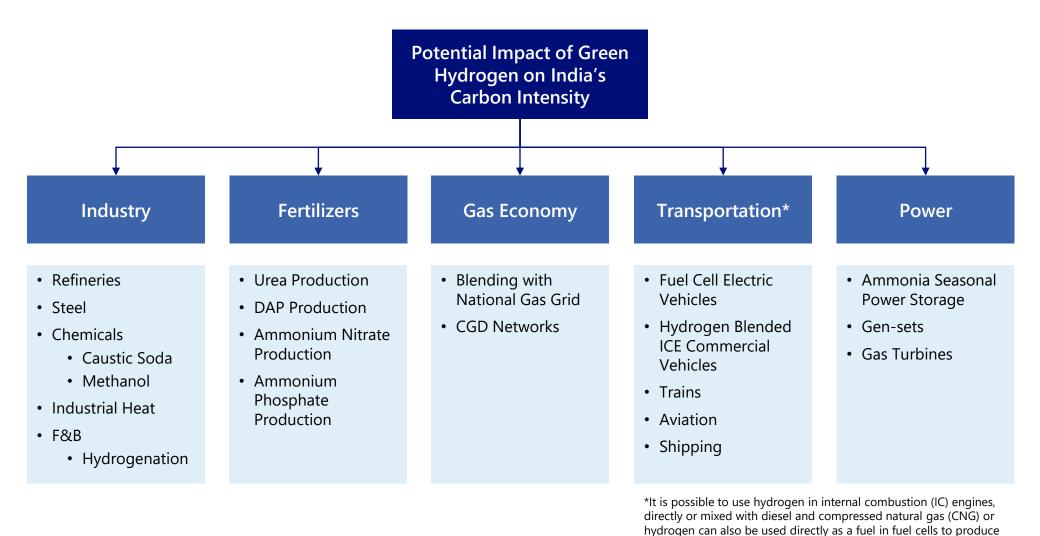
India emitted ~2.88 Billion Metric Tonnes of CO₂ in 2021; Power and Transport sectors are top emitters, India's crude oil import has been increasing ~11% CAGR



8

Hydrogen as a lever for decarbonisation (India) |Demand Potential and Future Projections

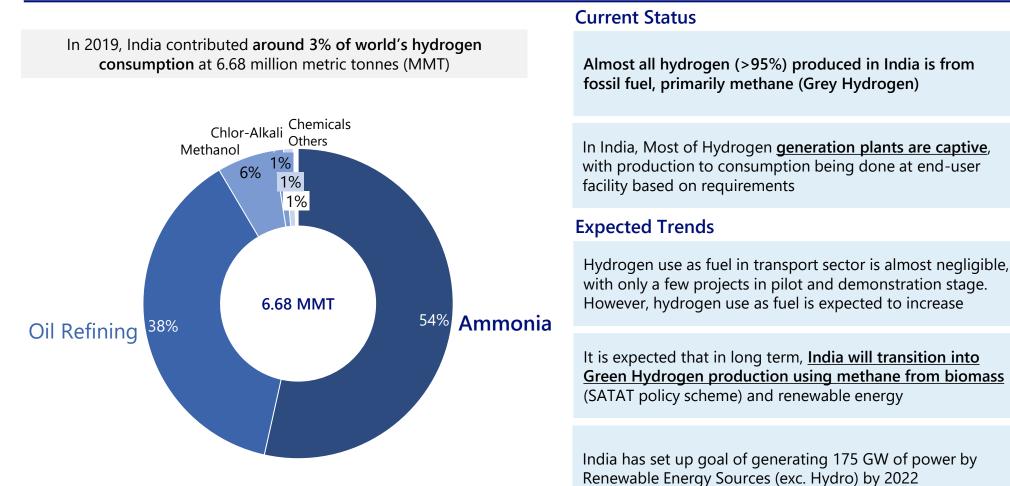
Hydrogen demand in India could be 29 mn tonnes by 2050. Usage in green steel & transport is likely to pick up post 2030, and in power from 2040


Hydrogen Demand Outlook & Share of Green Hydrogen (Without Policy Intervention)

- Initial demand growth (by 2030) is expected from mature markets like refinery, ammonia, and methanol, which are already using hydrogen as industrial feedstock and in chemical processes
- In longer term (after 2030), steel & heavy-duty trucking are likely to drive majority of demand, accounting for ~52% demand by 2050

Hydrogen as a lever for decarbonisation (India) | Potential impact

Green Hydrogen can be leveraged as a raw material and utility across sectors for emission reduction effectively



electricity.

Hydrogen as a lever for decarbonisation (India) | Current Status & Trends

Currently, India's H2 consumption is ~6.7 MMT, with more than 95% grey H2 usage; Industry (Oil refining & ammonia for fertilizers) is the primary end user

Hydrogen Production and Consumption in India

Opportunities in India – Demand Side

Refineries, Fertilizers and Chemicals are immediate opportunities, however H₂ costs are critical. For steel, transport & power gen; existing capabilities can serve

Source: NRI Analysis

12

3. Looking at the Value Chain for Unlocking Potential

Production

Iransportation

Retailing

Fuel Cell Use Cases

Production | Cost reduction potential from solar Drop in Solar prices will drive green hydrogen cost reduction significantly from by 2030 with scale, PLIs etc.

Levers	Description	Elements impacted
	Matching scale of Chinese PV manufacturing	• Modules and BOS ¹⁾
1. Scale	For bigger projects like 450,000 acres of land in Gujarat for setting up renewable energy projects which will bring down costs	Solar Park Charges
	CAPEX of storage will decrease due to industrialization of equipment	Compression & Storage
2. Government Support	Government support to manufacturing through schemes such as PLI	Modules and BOS
3. Tech and Innovation	Robotic Cleaning / Self cleaning modules	• 0&M
	Water conservations / recycling techniques deployed at scale	
4. Debt Servicing	Due to lower debt servicing cost, i.e. as low as 5%	Debt Servicing

Production | Cost reduction potential from Electrolysers and its suitability

At low scale production, Alkaline electrolysers are a better option for India, PEM is more suitable at higher volumes

	<u>Capex</u>	Scalability	Cost Reduction	
Alkaline Electrolyzer	 Lower initial investment and higher lifespan than PEM More suitable for low cost countries like India with low off-take initially 	 Scalability challenges in BOP cost due to complex system design Higher space requirement for larger capacity plants 	 Most of the cost reduction potential will come only from economies of scale Other levers such as electrode material, transport layer etc. have limited scope left 	
PEM Electrolyzer	 Higher than Alkaline by ~40% making it less viable for small scale production; Capex cost for PEM will mirror Alkaline post GW levels for single installation; GW level capacity at centralized costs will significantly increase the transportation costs 	 Simpler construction takes less space High scalability in BOP More cost effective at larger scale plants 	 Apart from scale, cost reduction will be achieved from bipolar plate design and change of electrode / catalyst material 	
Solid Oxide Electrolyzer	Less commercial deployment lead	 Better scope but controlled only by few companies 		

Production | Recent Mega Trends in Green Hydrogen / Electrolysers

Major Indian companies have already announced plans for green hydrogen & electrolyser manufacturing in alignment with Govt. vision & COP26 commitment

Institution		Date Announced	Project/Product	Brief Description
		Oct' 2021	Investment in Hydrogen, Solar firms	 Partnered Danish company Stiesdal to manufacture hydrogen electrolysers in India Invested \$29mn in German NexWafe, a photovoltaic product maker
Reliance Indus	Reliance Industries Limited	Sep' 2021	Target 100 GW of renewable energy by 2030	• Outlined 1:1:1 vision to bring cost of hydrogen down to under \$1 per kg in 1 decade by enabling a capacity to generate 100 GW of electricity from renewable sources and convert it into carbon-free hydrogen
		Oct' 2021	Use 3 GW solar power at electrolyser gigafactory	 Plan to use 3 GW of solar energy to generate 400,000 tonnes of hydrogen at it proposed electrolyser gigafactory
L&T Jan' 2022		MoU with HydrogenPro	• Signed MoU with Norwegian electrolyser firm HydrogenPro for setting up Gigawatt-scale mfg in India for alkaline water electrolysers	
adani Adani Group Jul' 2021		Build India's first green hydrogen plant	 Plan to set up 'Green Hydrogen' plant in Uttar Pradesh at Mathura Refinery, project aims to introduce green H₂ in Indian O&G sector 	
Corporation Oct' 2021		Aims to be one of the largest green H ₂ producers	 Plan to spend \$70bn to amass 45 GW renewable energy portfolio by 2030 and produce the world's cheapest green hydrogen. Plan to invest with potential partners for electrolyser manufacturing, backward integration for solar/ wind generation 	
DIPP GAIL	Gas Authority of India Limited	Nov′ 2021	EOI to select partners for setting up electrolyser facility	 Gas Authority of India has issued expression of interest for setting up electrolyser facility to produce green hydrogen
Bharat Petroleum	Bharat Petroleum Corporation Limited	Dec' 2021	BPCL & BARC collaborate to scale up tech for green hydrogen production	 collaborated with Bhabha Atomic Research Centre (BARC) to scale up Alkaline Electrolyser technology for Green Hydrogen production. Intent is to commercialize it for large scale usage for refineries

Source: Press Release & Media Articles

16

3. Looking at the Value Chain for Unlocking Potential

Production Transportation Retailing Fuel Cell Use Cases

Transportation | Methods

Based on volume and distance to be transported the transportation methods may vary; In Indian context, Type 1 Gaseous Tube Trailers are best suited

Tube Trailers (Gaseous)

- Gaseous hydrogen is most commonly transported by type-1 tube trailers.
- Tube Trailers can carry smaller quantities of compressed hydrogen in gaseous form over short to medium distances
- Transporting Hydrogen in Type 1 Gaseous Tube Trailers is the most cost effective way

Type-1 Tube Trailer

	Gaseous hydrogen can be transported through pipelines much the way	
Pipeline	natural gas is today.	
	Dedicated H2 pipeline are a new concept for India and need a lot of	
(Gaseous)	work for development and localisation	
	For small distances, dedicated H2 pipelines will be inefficient	t

Dedicated Pipeline

Cryogenic Tankers (Liquid)

- Hydrogen is transported as a liquid when high-volume transport is needed in the absence of pipelines.
- □ Liquid Cryogenic Trailers have very high carrying capacity for a single consumer destination, leading to lower asset utilisation

3. Looking at the Value Chain for Unlocking Potential

Production Transportation Retailing Fuel Cell Use Cases

Retailing | Cost reduction potential Retailing costs could drop due to scale, industrialisation of equipment used for dispensing

Levers	Description	Elements impacted
1. Technical	Decrease in underground storage due to industrialization of equipment & scale benefits due to commonalty with other sectors	• Low pressure Storage
	Decrease in tube cascade storage due to sacle and industrialisation	High Pressure storage
2. Scale		Compressor
	Cost reduction due to industrialization	• Dispenser
		• Chiller
		Other systems
 Subsidy on land/ Lease optimization 	 Large corporate houses in India can leverage their existing land Government subsidy, tax benefits on related real estate transactions 	Land/ Lease Price

3. Looking at the Value Chain for Unlocking Potential

Production	
Transportation	
Retailing	
Fuel Cell Use Cases	

Fuel Cell Use Cases | Hydrogen Based Mobility Options

FCEV being an alternate powertrain is only forward compatible for all vehicle segments

Segment	Forward Compatibility	Viability	Remark
			Global 2W FCV pilots/ prototype underway (Segway & Xidea in China)
			• Due to cost & complexity of cryogenic tanks make it less attractive for
		٢	small vehicle usage
, , , , , , , , , , , , , ,		•	 For LCVs with payload >4tons FCEV's are better solution to BEV in terms of negating heavy battery weight for having equivalent energy & range
			 The range and refueling advantage for FCEV is more suited to heavy- duty applications
			 Hydrogen fuel cells have a far greater energy storage density than lithium-ion batteries offering range advantage & being lighter

Fuel Cell Use Cases | Hydrogen Based Mobility Options

Major automotive OEMs have announced their plans to venture into Hydrogen based mobility options such as FCEVs

Insti	Institution Date Announced		Project/Product	Brief Description
TATA MOTORS	Tata Motors	Jun' 2021	Hydrogen bus based on PEM Fuel Cell	 Tata Motors won tender in Jun, 2021 to provide 15 hydrogen fuel cell-powered buses to Indian Oil Corporation Ltd (IOCL) IOC will use buses evaluate the potential of developing hydrogen-based PEM fuel-cell technology in India
	aimler Trucks	Oct' 2021	Hydrogen solutions for Heavy duty segment	 Daimler trucks announced shift to Hydrogen solutions for Indian market The Hydrogen solution will address the long-haul, heavy-duty segment
ΤΟΥΟΤΑ	Toyota	Oct' 2022	Flex fuel-strong hybrid electric vehicle (FFV-SHEV)	• Launched first-of-its-kind pilot project on flex fuel-strong hybrid electric vehicle (FFV-SHEV) that can run on 100 per cent ethanol.
		Mar' 2022	Green H2-based advanced fuel cell EV (FCEV)	 Launched India's first green hydrogen-based advanced fuel cell electric vehicle (FCEV), Toyota Mirai
	uatron & ETO Motors	Sep' 2022	Quantron and ETO Motors are planning a cooperation for the India and Europe	• ETO and QUANTRON is to develop BEV and possibly FCEV conversion kits for applications targeting a global market –trucks, buses or even trains (for FCEV), depending on cost and feasibility

4. Summary

Summary

Relevance of Green H2 in Indian Context

- India emitted ~2.88 Billion Metric Tons of CO2 in 2021 and crude oil import has increased at~11% CAGR
- India's COP26 commitments has triggered enhanced need to adopt & scale up green hydrogen production
- The Govt. of India has come up with a Draft Hydrogen Policy and major players have moved to harness potential in India's Green Hydrogen potential

The immediate focus of all Green Hydrogen announcements and measures by large industrial houses in India is in the Industrial use of Hydrogen – COP commitments would necessitate use of some amount of Green H₂

Unlocking levers to cost reduction and hence adoption

Electrolyser cost reduction will be driven by Scale, technology and efficiency learning curves, and expected increase in its efficiency by 2030. Production • Solar Power cost reduction will be based on incentives, large scale Cost facility development e.g. Large conglomerates matching scale of Chinese facility today as well as lower cost of funds Equipment cost reduction will be based on scale benefits and price drops due to industrialisation of compression and storage equipment · Trip length reduction and route optimization on account of scale in case of large conglomerates. The Hub and spoke model of pan India Transporta distributed Hydrogen production will reduce the running distance of tion Cost trucks carrying Hydrogen from plant to pump, thereby bringing down the cost of transportation than others Reduction in cost of equipment on account of Scale effects & • industrialisation of equipment manufacturing would decrease costs of equipment such as compressors, high and low pressure HRS storage, dispensers and chillers Reduction in lease/cost of land due to scale will help large • conglomerates to source land for stations at lower price leading to a further cost reduction

Nomura Research Institute India Pvt. Ltd.

NRI Consulting & Solutions 7th Floor, Tower A, Building 5 DLF Cyber City, Phase III Gurgaon 122002 India

ASHIM SHARMA Senior Partner & Group Head Ashim.Sharma@nri.com +91 95991 87825

About Nomura Research Institute

NRI is a leading global consulting firm which was established in 1965 in Japan. Today it has global revenues of ~ USD 4.9 billion with 18 offices in 12 countries. NRI provides consulting and IT solutions and services to its clients. Creating and Innovating the future is part of NRIs DNA. At the NRI Group we believe value creation involves unearthing issues facing our clients and markets and then helping our clients solve these issues.

